Welcome to
Allied Health Telehealth Virtual Education

Paediatric Malnutrition and Faltering Growth

Leah Thomas
Special Needs Dietitian
Children’s Hospital at Westmead

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth
Outcomes

- Accurately identify and assess faltering growth and malnutrition
- Understand and apply Malnutrition Screening to the paediatric population
- Effectively manage a child or adolescent with faltering growth or under-malnutrition

NSW Ministry of Health - Nutrition Care Policy

Malnutrition: ‘A state in which a deficiency, excess or imbalance of energy, protein and other nutrients causes measurable adverse effects on tissue/body form (body shape, size and composition), function or clinical outcome’

“undernutrition”
- Descriptive term rather than a diagnosis
- Other terms – growth failure, growth faltering, slow weight gain, failure to thrive, poor growth
- Often multifactorial
- For funding purposes in hospital documentation use “malnutrition”
Definitions

Traditionally
• Height or weight < 3rd percentile band
• Height or weight falling 2 percentile bands
• Weight below height by ≥ 2 percentile bands
• Weight < 80% of ideal weight for height

Diagnosis Related Group (DRG)
• Uses standard deviations below mean (z scores) to define severe, moderate or mild protein energy malnutrition
• Weight loss or clinical judgement can also be indicative
Both height and weight need to be assessed

- Weight gain is usually affected first but if problem persists, height can be affected
- Wasting (acute) = Low weight for age or decreasing weight centile
- Stunting (chronic) = Low height/length for age or decreasing height centile, may indicate chronic poor nutrition

Example of Wasting
If you experience connection problems prior to or during the session, please phone the eHealth Videoconference Support Team on 1 300 679 727

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth

Paediatric Malnutrition

Prevalence
• 15% of Australian Paediatric inpatients are malnourished
• 44% are at risk of malnutrition

Implications
• Loss of lean body mass
• Muscle weakness
• Developmental or intellectual delay
• Infections
• Immune dysfunction
• Delayed wound healing
• Prolonged hospital stay

White et al, 2015
Mehta et al, 2013

Example of Stunting
Malnutrition Prevalence

<table>
<thead>
<tr>
<th>Nutritional Status</th>
<th>National Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Patients Included (n=)</td>
<td>1175</td>
</tr>
<tr>
<td>Eligible Patients (n=)</td>
<td>832</td>
</tr>
<tr>
<td>Malnourished BMI Z-scores ≤ -2</td>
<td>15%</td>
</tr>
<tr>
<td>Wasting Weight-for-age Z-score ≤ -2</td>
<td>13.8%</td>
</tr>
<tr>
<td>Stunting Height-for-age Z-score ≤ -2</td>
<td>11.9%</td>
</tr>
<tr>
<td>Overweight 85%-95%</td>
<td>8.8%</td>
</tr>
<tr>
<td>Obese ≥95%</td>
<td>9.9%</td>
</tr>
</tbody>
</table>

White et al. 2015

Nutrition Screening

- At CHW nutrition screening occurs on admission for every patient admitted using the Paediatric Nutrition Screening Tool (PNST)

- PNST is the only validated malnutrition screening tool in Australia for paediatrics

- The PNST will form part of the admission assessment procedure and will be predominately completed by nurses on the ward, however any health professional can identify a patient as at risk of malnutrition

Mandatory for all NSW Health Facilities
Validated Paediatric Nutrition Screening Tool (PNST)

1. Has child unintentionally lost weight lately? Yes/No
2. Has child had poor weight gain over the last few months? Yes/No
3. Has child been eating/feeding less in the last few weeks? Yes/No
4. Is child obviously underweight/significantly overweight? Yes/No

White et al 2014

Paediatric SGNA

<table>
<thead>
<tr>
<th>Muscle wasting</th>
<th>Clavicle</th>
<th>Pectoral muscle</th>
<th>Shoulder (pectoral muscles)</th>
<th>Scapula - All the muscle groups around the</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look along line of the clavicle. The smaller the muscle mass the more prominent the bone.</td>
<td>Prominence of bone</td>
<td>Prominence of bone</td>
<td>Prominence of bone</td>
<td>Prominence of bone</td>
</tr>
<tr>
<td>Shoulder-to-arm joint looks square. Bones prominent. Axillary protrusion quite prominent</td>
<td>Scapula bone is not prominent. No impressions around</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secker & Jeejeebhoy, 2012
If you experience connection problems prior to or during the session, please phone the eHealth Videoconference Support Team on 1 300 679 727

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth

Paediatric SGNA

- Uses pt Hx, clinical symptoms, and a physical assessment
- Validated to identify malnourished children and those at risk of longer hospital stay
- Need to be able to conduct a physical assessment to assess muscle and fat wasting – training required
- All sections of the form do not need to be filled in
- Gives a rating of normal, moderate and severe
- Adult SGA is not validated in paediatrics

Secker & Jeejeebhoy, 2012
If you experience connection problems prior to or during the session, please phone the eHealth Videoconference Support Team on 1 300 679 727

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth

Paediatric Malnutrition

Under-nutrition, growth faltering, slow weight gain or failure to thrive OFTEN MULTIFACTORIAL

<table>
<thead>
<tr>
<th>Potential Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate Intake</td>
</tr>
<tr>
<td>Inability to consume food/drink – poor oral skills, dysphagia, Oral aversion – force feeding/pain Maternal neglect, depression, poverty, food insecurity Check infant formula recipe</td>
</tr>
<tr>
<td>Excessive Loss</td>
</tr>
<tr>
<td>Vomiting, reflux, diarrhoea</td>
</tr>
<tr>
<td>Inability to digest or absorb nutrients</td>
</tr>
<tr>
<td>Coeliac disease, Cystic Fibrosis, Chronic inflammation, Short gut</td>
</tr>
<tr>
<td>Inability to fully metabolise nutrients</td>
</tr>
<tr>
<td>Metabolic diseases e.g mitochondrial disease</td>
</tr>
<tr>
<td>Increased requirements</td>
</tr>
<tr>
<td>Increased work of breathing, cardiac issues, chronic infection</td>
</tr>
</tbody>
</table>
If you experience connection problems prior to or during the session, please phone the eHealth Videoconference Support Team on 1 300 679 727

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth
If you experience connection problems prior to or during the session, please phone the eHealth Videoconference Support Team on 1 300 679 727.

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth
Pulling it all together - baby <1 year

Diet history
- How often does the baby feed?
- How much does he/she drink? (how do you assess this in a breast fed baby?)
- What other drinks and food?

Cross checks:
- Wet nappies
- Diarrhoea or constipation
- Vomiting
- How settled is the baby?
- How does parent feel about feeding?
- What supports do parents have?

Diet History
From first waking to get up in the morning right around to the next morning
- Record actual times
- Details of what and how much ingested (not offered)
- Include sleeps
- All fluids, including breastfeeds and water
- Food groups by week – cross check

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth
If you experience connection problems prior to or during the session, please phone the eHealth Videoconference Support Team on 1 300 679 727

Plan

- Always aim to establish what is appropriate for the age group if possible
- Appropriate feeding patterns/timing
- Appropriate foods
- Appropriate feeding positions
- Appropriate child-centred feeding behaviors
- Adapt as necessary

Estimated Requirements

- Use appropriate equation i.e. NAP with current wt plus an IF of 1.2 – 1.3 for catch up wt gain or and a DF if appropriate OR use IBW
- If < 3 yrs no activity factor needed
- Over 3 years of age if height not available use Schofield equation
- Can also use the Failure to Thrive Equation (FTT)

FTT Equation - Peterson et al 1984, JADA 1984;84:810-5

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth
Estimated Requirements

- Use actual weight for protein and fluid

- Protein:
 - ~ 9% of EER or RDI for age
 - Do not exceed 4g/kg/d protein (from term)
 - Check when manipulating formulas – adding CHO can impact on CHO:protein ratio

- Fluid: Use RDI for age
 (NRV's for Australia and New Zealand, 2006)

Assessment

- Is the child meeting their energy, protein and fluid requirements based on your calculations?

- If not what will you do?
 - Depends on age and intake

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth
How Much Growth to Expect?

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Weight Gain (g/week)</th>
<th>Length Gain (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3-6</td>
<td>150</td>
<td>25cm</td>
</tr>
<tr>
<td>6-9</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td>50-75</td>
<td></td>
</tr>
<tr>
<td>12-24</td>
<td>2.5kg/year</td>
<td>12cm</td>
</tr>
</tbody>
</table>

Manipulation of Formula

1. Determine the usual concentration of the formula if formula fed

2. Determine how many calories and/or protein you need to add
 - Difference between required calories/protein and current intake

3. Decide how you will add calories/protein
 - Concentrate, add energy supplements or both
Manipulation of Formula
(role of the dietitian)

General Considerations
• Standard formula provides ~67kcal/100ml.
• Increasing energy usually occurs in 2 stages

80-85kcal/100ml formula can be achieved by either
• Concentrating the formula by 1.2 – 1.3 OR
• Adding an energy supplement such as a carbohydrate or lipid

Can increase to 100kcal/100ml if needed
➢ If breastfeeding can add carbohydrate syrup or lipids via syringe orally before, during or after a breast feed

Manipulation of Formula

Take care when concentrating formula:
• Don’t exceed 4g/kg of protein
• Adding a lot of CHO can increase osmolality and can cause feed intolerance
• LBW formula can become too high in osmolarity
• Follow-on formula – Check protein is not too high

The following formulas should not be concentrated
• Soy formula - Aluminum too high
• AR formula - Too thick, particularly on standing for 24hrs and used for enteral feeds
Children and Adolescents

- Aim to fortify food as a first step

- Can add oral supplements or formulas if required

Women and Children’s Hospital SA Health. 2010
Nutritional plan

- Assess need for NGT or admission
- Always have a plan for NGT removal

Monitoring

- Repeat diet Hx to assess if changes have been implemented - don’t assume they have
- If some progress, give more time before making changes – don’t be ruled by numbers

Biochemistry
- Albumin can be unreliable in acute phase response
- Check vitamins and minerals if relevant, i.e. iron, vitamin D
- Don’t check vitamins and minerals if there is no clinical reason
Case study

- 4.5 month old girl referred for faltering growth due to recent influenza illness
- Growth tracking from birth – 3 months but no weight gain in the past 1.5 months
- Whilst unwell oral intake decreased, however this has not improved since illness resolved
- Formula fed, solids not introduced as yet
Case study

- Currently 5.8kg, 13th centile, length 62.3cm and tracking on the 30th centile.
- Weight previously tracking on the 40th centile
- Usual feeds S26 Gold Newborn standard concentration, only managing 110ml x 6 per day
- Provides:
 - 76kcal/kg, 1.5g/kg of protein, and 113ml/kg

Case study

- EER – 100kcal/kg (NAP x 1.2 IF for catch up)
- EPR – 13g/day (2.2g/kg – 9% EER)
- EFR – 130 – 155ml/kg

- Currently receiving:
 - 76% EER, 68% EPR and 87% EFR
If you experience connection problems prior to or during the session, please phone the eHealth Videoconference Support Team on 1 300 679 727

Case study

Step 1
- 1.2 concentration S26 Gold Newborn orally at a minimum of 110ml x 6
- Provides 91kcal/kg, 1.8g/kg protein, and 113ml/kg fluid
 - 91% EER, 81% EPR and >87% EFR
- Review in 4-7 days and review weight

Case study

Step 1
- After 1 week 5.9kg and only 100g weight gain. However taking 125ml bottles. Further increase of calories required

Step 2
- Increase the concentration to 1.3 conc which will provide 110kcal/kg, 2.2g/kg protein, and 127ml/kg fluid
 - 100% EER, EPR and EFR

Step 3
- After a few weeks her intake and weight improved so were able to resume standard concentration formula as she was having 130ml/kg orally due to improved nutrition and appetite

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth
If you experience connection problems prior to or during the session, please phone the eHealth Videoconference Support Team on 1 300 679 727

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth

Change takes time

A small adjustment to the wheel of an ocean liner takes time to show the ship has changed course

Prof Ian Alexander Metabolic Physician CHW
If you experience connection problems prior to or during the session, please phone the eHealth Videoconference Support Team on 1 300 679 727

Please complete your online evaluation at https://www.surveymonkey.com/r/fgrowth

References

- Seker DJ and Jeejeebhoj KN. How to perform Subjective Global Nutritional Assessment in Children. J Acad Nutr Diet. 2012;112(3)424-431
SAVE THE DATE
Paediatric Update Day
NUTRITION & DISABILITY
(Tube feeding, blenderised feeds, a safe swallow, the NDIS & case studies)

The Children's Hospital Westmead
Friday 10th March 2017
Program and registration will be released in late 2016

Thank you
Questions?

Please complete your online evaluation at https://www.surveymonkey.com/r/rfqrowth